Classification of Faces in Man and Machine

نویسندگان

  • Arnulf B. A. Graf
  • Felix A. Wichmann
  • Heinrich H. Bülthoff
  • Bernhard Schölkopf
چکیده

We attempt to shed light on the algorithms humans use to classify images of human faces according to their gender. For this, a novel methodology combining human psychophysics and machine learning is introduced. We proceed as follows. First, we apply principal component analysis (PCA) on the pixel information of the face stimuli. We then obtain a data set composed of these PCA eigenvectors combined with the subjects' gender estimates of the corresponding stimuli. Second, we model the gender classification process on this data set using a separating hyperplane (SH) between both classes. This SH is computed using algorithms from machine learning: the support vector machine (SVM), the relevance vector machine, the prototype classifier, and the K-means classifier. The classification behavior of humans and machines is then analyzed in three steps. First, the classification errors of humans and machines are compared for the various classifiers, and we also assess how well machines can recreate the subjects' internal decision boundary by studying the training errors of the machines. Second, we study the correlations between the rank-order of the subjects' responses to each stimulus-the gender estimate with its reaction time and confidence rating-and the rank-order of the distance of these stimuli to the SH. Finally, we attempt to compare the metric of the representations used by humans and machines for classification by relating the subjects' gender estimate of each stimulus and the distance of this stimulus to the SH. While we show that the classification error alone is not a sufficient selection criterion between the different algorithms humans might use to classify face stimuli, the distance of these stimuli to the SH is shown to capture essentials of the internal decision space of humans. Furthermore, algorithms such as the prototype classifier using stimuli in the center of the classes are shown to be less adapted to model human classification behavior than algorithms such as the SVM based on stimuli close to the boundary between the classes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Body Mass Index Classification based on Facial Features using Machine Learning Algorithms for utilizing in Telemedicine

Background and Objectives: Due to the impact of controlling BMI on life, BMI classification based on facial features can be used for developing Telemedicine systems and eliminating the limitations of measuring tools, especially for paralyzed people. So that physicians can help people online during the Covid-19 pandemic. Method: In this study, new features and some previous work features were e...

متن کامل

Classification of EEG Signals for Discrimination of Two Imagined Words

In this study, a Brain-Computer Interface (BCI) in Silent-Talk application was implemented. The goal was an electroencephalograph (EEG) classifier for three different classes including two imagined words (Man and Red) and the silence. During the experiment, subjects were requested to silently repeat one of the two words or do nothing in a pre-selected random order. EEG signals were recorded by ...

متن کامل

An adaptive estimation method to predict thermal comfort indices man using car classification neural deep belief

Human thermal comfort and discomfort of many experimental and theoretical indices are calculated using the input data the indicator of climatic elements are such as wind speed, temperature, humidity, solar radiation, etc. The daily data of temperature، wind speed، relative humidity، and cloudiness between the years 1382-1392 were used. In the First step، Tmrt parameter was calculated in the Ray...

متن کامل

MAN-MACHINE INTERACTION SYSTEM FOR SUBJECT INDEPENDENT SIGN LANGUAGE RECOGNITION USING FUZZY HIDDEN MARKOV MODEL

Sign language recognition has spawned more and more interest in human–computer interaction society. The major challenge that SLR recognition faces now is developing methods that will scale well with increasing vocabulary size with a limited set of training data for the signer independent application. The automatic SLR based on hidden Markov models (HMMs) is very sensitive to gesture's shape inf...

متن کامل

Detection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms

acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...

متن کامل

A Comparative Study of Rumi's and Rumi's Mystical Thoughts on the Complete Man relying on Masnavi and Foucault

Human is the god’s caliph on earth and moving toward perfection is the most important feature of him. Attention to the perfect man and its recognition is one of the subjects that have considered by various religions. The perfect man in mysticism is like a mirror that has two faces: divine names and attributes manifest on one of the faces and the infallible god observes itself on it and on the o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 18 1  شماره 

صفحات  -

تاریخ انتشار 2006